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Linear stability of rotating Hagen-Poiseuille flow has been investigated by an ortho- 
normal expansion technique, confirming results by Pedley and Mackrodt and 
extending those results to higher values of the wavenumber 1.1, the Reynolds number 
R, and the azimuthal index n. For [a] 2 2, the unstable region is pushed to  considerably 
higher values of R and the angular velocity, Q. I n  this region, the neutral stability 
curves obey a simple scaling, consistent with the unstable modes being centre modes. 
For n = 1,  individual neutral stability curves have been calculated for several of the 
low-lying eigenmodes, revealing a complicated coupling between modes which 
manifests itself in kinks, cusps and loops in the neutral stability curves; points of 
degeneracy in the R,Q plane; and branching behaviour on curves which circle a 
point of degeneracy. 

1. Introduction 
Pedley (1969) has shown by an asymptotic approximation, valid when the wave- 

number, lal, is low and the rotation rate, Q, is much greater than the axial Reynolds 
number, R, that, for a viscous, incompressible fluid in a circular pipe, the combination 
of rigid-rotation and Hagen-Poiseuille flow is linearly unstable to non-axisymmetric 
disturbances for certain values of the parameters (R, 0, a, and the azimuthal index n).  
This instability has been confirmed numerically and extended to  slow rotation by 
Mackrodt (1976) and, independently, by us (Cotton, Salwen & Grosch 1975; Cotton 
1977). These linear stability results are consistent with the global stability bound 
obtained by Joseph & Carmi (1969). The linear stability of this flow has also been 
studied in the inviscid approximation by Howard & Gupta (1962), Pedley (1968), 
Maslowe (1974) and Warren (1979). 

I n  this paper, we are reporting the results of a study of the linear stability of this flow 
by the orthonormal expansion technique of Salwen & Grosch (1972; referred to below 
as I) .  

We have extended the neutral stability results of Mackrodt to  higher (al, R, Q 
and n. I n  contrast with the results in the range 0 > a 2 - 1 ,  which revealed insta- 
bilities a t  quite low Reynolds numbers and rotation rates, we find that a t  a 5 - 2  
the unstable region is pushed to considerably higher values of R and Q. The neutral 
stability curves change their shape and obey a simple scaling which is consistent with 
the unstable modes being centre modes - small except in a region near the centre and 
insensitive to  the radius a t  which the boundary conditions are imposed. 

For n = 1, we have also calculated individual neutral stability curves for several of 
the low-lying eigenmodes. The results show a complicated coupling between modes 
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which manifests itself in kinks, cusps and loops in the neutral stability curves; points 
of degeneracy in the R, !2 plane a t  which two modes have the same complex eigenvalue; 
and branching behaviour on curves which circle a point of degeneracy. 

2. Method of calculation 

by 
The base flow is given in physically dimensioned cylindrical co-ordinates (r*, 8*, z * )  

V" = vg 28 + v; 2z = a,r*28 + w, [ 1 - (r*/r0)2] 2z, (1) 

where ro is the radius of the pipe, Qo is the angular velocity and W, is the maximum 
axial velocity. 

In  the remainder of this paper, we shall use dimensionless variables determined by 
a Iength scaIe yo,  a velocity scale V, = v/ro,  a time scale r0/& = r U v ,  and a pressure 
scale p V i  = pv2/r& where p is the density and v is the kinematic viscosity. I n  terms of 
this scaling, the base flow velocity is 

V = Qr2,+ R(1 - r z ) t z ,  
where the 'rotation rate', 

a = Qoro/& = aor;/v ,  

is the dimensionless angular velocity and the Reynolds number, 

R = w,/V, = rowo/v ,  (4) 

is the maximum value of the dimensionless axial velocity. (Our scaling is different from 
I, which used W, as the velocity scale. As a result, R does not appear in our equations 
but, instead, enters through V, as does 0. Also, our eigenvalues, A, and cr, which will be 
introduced below, differ from those of I by a factor of R. Our Reynolds number, 
however, is the same as that of I .)  

Our procedure is essentially the same as that of I. Because of the translational and 
rotational symmetry of the base flow, the linear disturbance equations, 

av - + V(V . v) - v x (V x V) - v x (V x v) = - v x (V x v) - V p ,  
at 

possess solutions of the form 

v(r, t)  = [ ( ~ ( r ) ~ ~ + ~ ( r ) ~ ~ + w ( ~ ) ~ ~ ] e ~ ( ~ ~ + ~ ~ ) e ~ t  (6) 

for any integral n. The temporal normal modes are those for which a is real. For given 
R, Q, n and a, we expand v in terms of the same set of expansion functions (satisfying 
the continuity and boundary conditions) as used in I and find that the possible cr's 
are the infinite, discrete set of complex eigenvalues of a matrix, F, with elements 

FKl = A,&,, + ( 7 )  

where the hK7s are the real eigenvalues associated with the expansion functions (see I, 
equation (8)) and the matrix elements are given (I, equation (15)) by 

Q,, = (V x (v, x V) - v, x (V x V), v1). 
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(The inner product ( ) is defined in I ,  equation (lo).)  The physical difference in this 
problem arises out of the fact that the velocity field (2) includes a rotational term 
(proportional to Q) as well as an axial term (proportional to R). 

As in I, each matrix element of F is expressible as a sum of a finite number of terms 
involving the AK’s, Bessel functions, and modified Bessel functions. We truncate F to 
an M x M matrix involving the M greatest (least negative) values of A,, evaluate the 
matrix elements, and use one of several routines based upon either the QR algorithm 
(Wilkinson 1965; Parlett 1967) or the stabilized LR algorithm (Wilkinson 1965; IMSL 
1975) to  calculate the eigenvalues. 

In  general, not all of the eigenvalues of the truncated matrix are good approxi- 
mations to eigenvalues of F, but we have not usually been concerned with more than 
the first five eigenvalues; those with greatest real part, a,. We have generally used 
matrix sizes of 30 x 30 to 80 x 80 for the first three or four modes for 1011 < 2, R 6 lo4, 
lalR < lo4 and matrix sizes up to  140 x 140 elsewhere, though for a few points we 
went as high as 180 x 180. The matrices were evaluated to double precision (62 bits) 
and, in most cases, the eigenvalue calculation used single-precision arithmetic (27 bits). 
As a check, we ran a number of tests of truncation error by increasing matrix size and 
of round-off error by using a double-precision version of the eigenvalue routine. We 
have shown for two test cases (Cotton 1977, $4.5) that for sufficiently large matrix 
size and sufficiently high arithmetic precision our numerically calculated higher 
eigenvalues (i.e. those with ar more negative) approach the corresponding diagonal 
matrix elements except for a residual error (‘truncation edge’) in the last few eigen- 
values. Hence we conclude that all of the eigenvalues can, in principle, be determined. 
We have found cases of eigenvalues whose evaluation required double precision, but 
this was not the case for those reported in this paper. 

For a given disturbance symmetry (i.e. choice of n and a ) ,  a given base flow (specified 
by R and 0) will be unstable to a disturbance of that symmetry if there is at least one 
normal mode with positive a,.. Then, for given n and a, the set of points with 

max (a,) > 0 

defines an unstable region in the R, C2 plane. The boundary of this unstable region is 
the ‘basic neutral stability curve’ defined by max (a7) = 0. Because the least stable 
mode (mode with maximum a,) a t  one value of (R, Q) can change continuously to  a 
mode which is not the least stable mode a t  some other point (R‘ ,  Q’), we have also 
found it useful to  plot ‘neutral stability curves’ corresponding to  other a,’s going 
positive. All of these neutral stability curves, as well as some other special plots 
(Re(a,)= Re(a2),Im(a,)= Im(aZ) ,or Im(a)  = O)givenin$ 3below,require searching 
i n  the R, Q plane for points whose eigenvalues have the desired properties. 

It should be noted that, on any neutral stability curve, the mode for which ar = 0 
has a real frequency and therefore is a spatial as well as temporal normal mode. The 
neutral stability curves presented below are, therefore, neutral stability curves for the 
spatial as well as the temporal problem. 
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FI~TJRE 1. Basic neutral stability curves for rotating Hagen-Poiseuille flow, n = 1, 

selected a. The solid lines follow Pedley’s approximation. 

3. Results 
Due to symmetry, reversal of the sign of any two of the four parameters (R, Q, n, a )  

simply gives us a corresponding disturbance with the same growth or decay rate.? 
For convenience, we adopt the convention that R, Q and n are non-negative while a 
can be positive, negative, or zero. I n  terms of this convention, all instabilities which 
have been found for this flow have been for a < 0 ,  which corresponds to the lines of 
constant phase and constant radius having the same screw sense as the flow lines in 
the base flow. For convenience, we have divided our presentation into five subsections 
in which we discuss the basic neutral stability curves, the neutral stability curves for 
the individual modes, degeneracy structure, branching behaviour, and the variation 
of Im(a) .  

3.1. Basic neutral stability curve. Comparison with other work 

For n = 1 , 2 , 3 ,  we have obtained neutral stability curves for a number of different 
values of a. These show regularities for low 1~1.1 and high la1 and a more complicated 
behaviour in a transition range which is dependent on n but, in these cases, runs roughly 
from a = - 1 to - 2. I n  order to show the trend with n, we also will present results for 
a = - 1, n = 5, 10, 15, and 30. 

t Reversing R and a is equivalent to reversing the direction of the z axis; reversing Cl and n 
is equivalent to reversing the direction of TC or y axis; reversing a and n is equivalent to  taking 
the complex conjugate of the disturbance. 
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FIGURE 2. Basic neutral stability curves for rotating Hagen-Poiseuille flow, n = 2, 
selected a. The solid lines follow Pedley's approximation. 

Figures 1-3 show the basic neutral stability curves for n = 1 ,2 ,3  at low and high 1.1 
as well as a t  a = - 1 )  which is near the low- la1 end of the transition range. The curves 
for a = - 0.01 and - 0.1 have the characteristic low-[al form. At first glance, each of 
these appears, on these log-log plots, to  be three sides of a rectangle with rounded 
corners, making an angle of 45' with the co-ordinate axes; on closer inspection, one 
sees that the bottom branch is far from straight and that its asymptotic slope is 
approximately & (R cc Rt) rather than 1.  One of the most striking properties of the 
low-la1 curves is their scaling with a which was first found by Pedley (1969) and 
Mackrodt (1976). 

Pedley has developed a set of approximate equations for this flow, valid in the limit 
a+ 0, R -+ 00, aQ and R finite, and has found an exact solution which may be used 
(Cotton 1977) to derive simple equations for the neutral stability surfaces. The results 
are summarized in the appendix. In  this approximation, the neutral stability surfaces 
are of the form 

R = f s ( n ,  an) (9) 

(where the parameter s distinguishes surfaces corresponding to different modes) and 
the neutral stability curves exhibit an a-independent Rmin and the asymptotic 
behaviour 

R N  Ia1Q/n as lalQ-+co, ( I O U )  

Rcc (la]R)-' as loll Q-+0. ( lob )  
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selected a. The solid lines follow Pedley’s approximation. 
FIGURE 3. Basic neutral stability curves for rotating Hagen-Poiseuille flow, = 3, 

The solid curves on figures 1-3 have been calculated by using the Pedley approxi- 
mation. They are in excellent agreement with our results, not only for 1011 < 1, R < S2, 
where it is expected, but, surprisingly, for some low-S2 sections of the a = - 0.01 and 
a = - 0.1 curves and high-R portions of the curves for higher la1 where R.2 S2. 

Mackrodt developed a set of equations which are valid for a+ 0, R -+ co, aR and LR 
finite. He carried out some numerical calculations for these approximate equations 
as well as for the full equations for specific values of a in the range - 0.1 a 2 - 1 .1 .  
His asymptotic equations apparently cannot be integrated exactly, but they do have 
analogous symmetry properties to  the Pedley equations which result in neutral 
stability surfaces of the form 

LR = fs(n, aR). ( 1 1 )  

Mackrodt has also shown that, in his approximation, the neutral stability curves have 
an a-independen t S2 n. 

Our low-la1 results are in good agreement with Mackrodt’s curves to the extent that 
we have been able to  compare them and also possess the scaling property predicted 
by ( 1  1) .  (In fact, one can, for agiven n, obtain our complete a = - 0.1 curve by shifting 
part of the a = -0.01 curve downward according to  (9) and part of it to  the left 
according to ( 1  l ) . )  

Mackrodt’s numerical calculations for the full equations gave curves which start in 
the region where Pedley’s approximation is valid and go through Qmin and along the 
lower branch no further than S2 = 200. We are in generally good agreement with these 
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FIGURE 4. Test of high- la1 scaling for basic neutral stability curves for rotating Hagen-Poiseuille 
flow. The n values are: . , 1 ; x , 2;  + , 3. Note that, for n = 1, the a = - 2.00 points near the 
nose of the curve occur at slightly lower values of R/la13, causing a spread in the curve. 

results except that, for SZ 2 100 on the lower branch, his a = - 1.0 and - 1 - 1  curves 
have somewhat different slopes (on a log--log plot) than ours. 

The neutral stability curves for n = 1,  a = - 2, - 3, - 4, - 5, - 6 in figure 1 and 
for n = 2, 3, a = - 2, - 3 in figures 2 and 3 show the characteristic high-la1 behaviour. 
On a log-log plot, curves for different a and the same n have the same shape but are 
shifted parallel to  the line R = f i g ,  with corresponding points having the same values 
of R/(a13 and Q//CX(~.  Figure 4, in which we have plotted (Q/(aI2) vs. (R/lal3) for all 
of the high-la1 neutral stability points shown in figures 1-3, confirms that these curves 
have merged to form one curve for each value of n. We also find that our high-la1 
neutral stability curves have the same asymptotic behaviour a t  high Reynolds 
number as the low-la\ curves: 

on the upper branch and 

on the lower branch. 
Figures 5-7 show the transition from low- to high-la1 behaviour. In  a rather narrow 

range of a, the curves develop a constriction and pinch off to form one or more islands 
of instability in the low-R region and the islands then shrink and vanish. Throughout 

lalSZwnR as R+co (12a) 

ficcR4 as R+co (12b) 
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FIGURE 5 .  Basic neutral stability curves for rotating Hagen-Poiseuille flow, li = 1, selected a. 
The a values are: x , - 1.00; solid line, - 1.19; f ,  - 1.20; . , - 1.34; dashed line, -2-00. 

this range of a,  the form of the curves in the high-R region is quite similar to that of the 
high-la( neutral stability curves. In particular, the asymptotic behaviour as R + co 
is given by (12) in this range of a, just as it is for low and highloll. 

We have not carried out many calculations for n > 3. We do, however, present plots 
of the neutral stability curves for a = - 1 ,  n = 5, 10, 15,30 in figure 8 in order to  show 
the trend with increasing n. As n increases, the unstable region for a = - 1 is pushed 
up to higher R and R but the form of the curves gets to  be closer to  that for low la1 . 

I n  table 1, we present some numerical results for points of minimum R and points 
of minimum R. The low-la1 minimum-S2 results are consistent with Mackrodt’s results 
of Rmin = 26.9G a t  la1 R = 106.G for n = 1 and Rmin = 43.47 a t  la1 R = 165.4 for 
n = 2. As Joseph 85 Carmi (1969) have noted, their stability bound, R, z 81.49, below 
which the flow must be globally stable, is remarkably close to the lowest critical 
Reynolds number of the linear theory (cf. our Rnlin M 82.9 for n = 1, a = -0.01, 
R = 4130). This stability bound is, however, independent of Q, in contrast with the 
linear theory, which gives no instability for R < Rmin. 
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FIGURE 6. Basic neutral stability curves for rotating Hagen--Poiseuille flow, n = 2, selected a. 
The a values are: +, - 1.52; outer solid lines, - 1.53; . , - 1.54; inner solid lines, - 1.56; dashed 
line, -2.00. 

1% U 'mia Occurs at R Rmi, Occurs at R 

1 
1 
1 
1 

2 
2 
2 
3 
3 
3 
3 
5 

10 
15 
30 

9 u 

- 0.01 
- 0.1 
- 1.0 
- 2.0 
- 0.01 
- 0.1 
- 1.0 
- 2.0 
- 0.01 
- 0.1 
- 1.0 
- 2.0 
- 1.0 
- 1.0 
- 1.0 
- 1.0 

27.0 
27.0 
33.5 

43.5 
43.5 
53.5 

69.8 
69.9 
82.1 

759 

834 

1320 
163 
49 1 
999 

3 590 

10700 
1070 

156 
3 220 

16 600 
1660 

193 
2 280 

23 300 
2 330 

258 
2 540 

454 
1510 
3 650 

20 800 

82.9 
83.1 

109 
2810 

91.0 
91.2 

108 
1840 

110 
110 
125 

2 020 
176 
356 
600 

1680 

4130 
415 
51.8 
835 

9 100 
909 
106 
972 

16 400 
1650 

186 
1560 
438 

1780 
4 500 

25 100 

TABLE 1. Selected neutral stability data. 
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FIGURE 7.  Basic neutral stability curves for rotating Hagen-Poiseuille flow, n = 3, 
selected 01. The cc values are: +, - 1.94; ---, - 1.95; . , - 1.96; - - -, - 2.00. 

From (12), we find, for comparison with the inviscid stability results, that, for 
R-too with 01 and E = R / O  fixed, the range of instability is given by E > - a / n  > 0. 
This agrees completely with Pedley’s (1968) low-la1 inviscid stability results and is 
consistent with the necessary condition and the sufficient condition for inviscid 
instability derived by Maslowe (1974, equations (2.16) and (6.2)). It shouId be 
emphasized, however, that  if one takes the limit of the viscous results for R ir 00 a t  
fixed O, the flow will be stable. 

3.2. Higher modes 

Some of the most interesting behaviour was discovered when we decided to look a t  the 
neutral stability curves for the higher eigenmodes for n = 1 and to  compare them with 
the appropriate Pedley limits. Figures 9-13 show some of these curves at  various 
values of a. I 

For ct = - 0.1 (figure 9),  the behaviour in the region of Pedley’s study is very regular. 
Outside of this region, however, there are changes in the order of the real part of r for 
the different modes and corresponding crossings of the neutral stability curves. In  
particular, the crossing of the curves designated as mode 1 and mode 2 gives rise to 
a kink in the basic neutral stability curve which was visible in figure 1 .  
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FIGURE 8. Basic neutral stability curves for rotating Hagen-Poiseuille flow, a = - l . O O *  
selected n. The n values are: 0, 5;  + , 10; x , 15; 0 ,  30. The solid lines follow Pedley’s approxi- 
mation. 

For a = - 0.9 (figure lo), the neutral stability curves for the two least-stable modes 
have formed a cusp (at R = 1550, R = 871) and matching indentation which suggest 
a more complicated behaviour. In  addition, the neutral stability curves for the third 
and fourth modes have shifted to higher values of R and R and now resemble the 
high-la1 form discussed in $3.1. At a = - 0-909 (figure 11)) the low-R parts of the two 
curves have joined (near the former position of the cusp) to form a closed loop and the 
‘tails’ of the two curves have joined a t  the low-R end and have approached each other 
a t  the high-R end. Inside the loop and between the tails, there are two unstable modes. 
Since the loop a t  a = - 0.909 has been formed from pieces of what were two separate 
mode curves at  a = - 0.9, it is clear that the mode labelling has to be revised. We have 
chosen a local ordering in which the most unstable mode is defined to be mode 1, etc. 
(see figure 1 I). 

By a = - 1-0 (figure 12), the loop is somewhat smaller and the tails have either 
disappeared or moved to higher R and R. The curve (with Rmin close to lo4) which we 
labelled as the mode 3 neutral stability curve for a = - 0.9 (figure 10) now corresponds 
to mode 2. Inside it, as well as inside the loop, there are two unstable modes. By 
a = - 1.1 (circles on figure 13)) the loop has shrunk almost to vanishing; by a = - 1.15 
(solid line on figure 13) the loop has disappeared. 
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3.3. Degeneracy structure 

At the crossing point of the loop (indicated by arrow on figure 12), there are two 
neutrally stable (a, = 0) modes with different values of ai. Since, on the remainder of 
theloop, one of the two modes is unstable and theother is neutrallystable, the crossing- 
point is the only point on the loop where the two modes have equal a,. We also found 
one point on the loop where the two modes have equal ad. That suggested that the 
locus of equal a, and the locus of equal ai each enter the loop without leaving and this 
led us to investigate those curves. 

The results for a = - 1.0 are shown in figure 14. The curves defined by 

R,e(a,) = Re(a2) and Im(a,)  = Im(a,) 

meet a t  two points of degeneracy (i.e. a1 = a,), (R z 296, R z 33.8) and 
(R FZ 563, Q z 343), and appear to form a single smooth curve. One of the points of 
degeneracy lies just inside the loop; the other is in the stable region. 

To investigate whether, a t  the points of degeneracy, there are two linearly inde- 
pendent eigenfunctions corresponding to the same eigenvalue or one eigenfunction 
and one generalized eigenfunction (see, e.g., Di Prima & Habetler 1969), we calculated 

the cosine of the ‘angle’ between the numerical eigenvectors for the two least-stable 
modes, a t  the values of (R, R )  corresponding to our best numerical estimates of the 
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FIGURE 10. Neutral stability curves for the first four eigenmodes, n = 1, a = - 0.900. The dots 
( . ) follow Pedley’s approximation for the first two modes ; for modes 3 and 4, the approximation 
is too inaccurate to be relevant. 

points of degeneracy. The cosines obtained were 0.99917 a t  the lower point and 
0.99965 a t  the upper point. These values lead us to believe that cos B,, + 1 a t  the actual 
points of degeneracy, which corresponds to  having one eigenvector and.one generalized 
eigenvector. I n  later work, we have found similar behaviour for a degeneracy in non- 
rotating Hagen-Poiseuille flow (Salwen, Cotton & Grosch 1980). 

The degeneracy structure continues to  exist a t  both lower and higher 1.1. Figures 
15-17 show the loci of equal real and imaginary parts of u1 and u2 for a number of 
different values of a, ordered in sequence from low la\ t o  high \a\. At a = - 0-1 
(figure 15), we find only one point of degeneracy (in the stable region a t  R z 2310, 
SZ FZ 31.0) and the curves of equal a, and of equal ui give no indication of joining a t  the 
upper end. Figure 16 shows part of the transition from an open to a closed locus. By 
a = - 0-9, the structure is much the same as that a t  a = - 1.0, even though the stability 
loop has not yet closed. Figure 17 shows the disappearance of the degeneracy structure 
a t  higher lal. When the stability loop vanishes (a = - 1-15), the upper point of 
degeneracy is forced into the stable region. By a = - 1.25, these two points of de- 
generacy have merged and disappeared and the remaining loop, given entirely by 
ulr = cgr, is close to disappearing. 
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FIGURE 11. Neutral stability curves for the first three eigenmodes, n = 1, a = -0.909. The 
dots ( . )  follow Pedley’s approximation for the first two modes; the approximation for mode 3 
is too inaccurate to be relevant. 

3.4. Branching behaviour 

Because the eigenvalues are continuous functions of a, R and R, our initial inclination 
was to number the modes by a continuous mapping from their order in the Pedley 
region (ul least stable in the Pedley region, u2 next least stable, ..., with ul, u2, ... 
continuous complex functions). We discovered, however, that the two modes we 
numbered crl and u2 interchanged values in circling the stability loop of figure 14, so 
that this numbering system could not be unique. At the crossing point both modes are 
neutrally stable, with Re(vl)  = Re(u2) = 0, Im(u,) = uli, Im(u,) = vzi =l uli. As 
one goes around the loopin the counter-clockwise direction, one is following a neutrally 
stable mode with Im(g)  initially equal to  vli and an unstable mode with Im(g)  
initially equal to  u2i and both modes have continuous real and imaginary parts. When 
one arrives back a t  the crossing, Im (u) for the neutrally stable mode approaches uZi 
and Im (a)  for the unstable mode approaches uli, so they have interchanged eigenvalues. 

This interchange will occur on any loop which circles one of the points of degeneracy 
and not the other. As the loop crosses the segment Re(cr,) = Re(u2), the real parts of 
the eigenvalues change order; as the loop crosses Im (u,) = Im (g2) the imaginary 
parts change order; in a full circuit of the loop, both real and imaginary parts change 
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FIGURE 12. Neutral stability curves for the first three eigenmodes, n = 1, a = -1.00. The 
solid line follows Pedley’s approximation for the first mode; the approximation for mode 2 
(not shown in figure) fails to show any loop structure. Inside the loop, there are two unstable 
modes. The arrow points to the location of the crossing point of the loop, 

order so the values of (rl and v2 are interchanged. In circling a loop which encloses both 
points of degeneracy (or none) the eigenvalues are not interchanged. Interchanges of 
eigenvalues occur for any closed path enclosing a single point of degeneracy regardless 
of the form of the neutral stability curves. 

The branching behaviour of these two eigenvalues in the R, !2 plane is analogous 
to that of a complex function with a double-sheeted Riemann surface and a pair of 
branch points. The present phenomenon is, however, much more complicated. There 
is a matching pair of degeneracies with R and 9 < 0; there are indications in the results 
(e.g. additional crossings) of more degeneracies which would couple these modes to 
other normal modes; and it is even possible that all the modes are coupled, pairwise, 
in this manner. 

We have received from Dr P.-A. Mackrodt a copy of an earlier report (Mackrodt 
1971) than the one (Mackrodt 1976) referred to above. Mackrodt found branching on 
one curve and suspected it was connected with a Riemann sheet behaviour associated 
with some sort of singular point. He did not, however, identify the singular point 
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FIGURE 13. Neutral stability curves for the first two eigenmodes, n = 1, a = - 1.10 and for 
the first eigenmode for a = - 1.15. The curve for a = - 1.15 has been shown as a solid line to 
distinguish it easily from the curve for a = - 1.10. Inside the loop for a = - 1.10, there are 
two unstable modes. 

(which in this case was the degeneracy in the stable region) and, therefore, was unable 
to predict accurately the circumstances in which such branching should be expected. 

3.5. ResuEts.for Im(u)  

For all of the cases studied, we find 

Im(u)  z -nQ-aR -nQ 1-- ( ::) 
on the high-R portion of the upper branch of the neutral stability curve, which is 
consistent with Pedley’s conclusion that Im(u)  z -nrR for u+O. (The two forms of 
the right-hand side of (14) are equivalent because of the asymptotic variation (12a) 
of R with Q.) We have not found any simple generalization for Im ((T) on the remainder 
of the neutral stability curves except that, in all cases, I m ( a )  > 0 on the high-R 
portion of the lower branch. 

Thus, for 1.1 5 n, Im (a) changes from negative values on the upper branches to 
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FIGURE 14. Lines of Re(ul) = Re(u,) and Im(u,) = Im(u , ) ,  n = 1, a = -1.00. +, 
= Im(up) ;  . , Re(ul) = Re(u2); x , ul = us, degeneracy. The solid line follows the 
stability curve for modes 1 and 2. 

positive values on the lower branches of the neutral stability curves and we can expect 
to find curves of Im (a)  = 0. On each of these curves, the disturbance with Im (a) = 0 
is a ‘standing wave’ in the sense that its phase, 

$ ( O , z , t )  = nO+az+Im(a) t ,  (15) 

is independent of the time. Figure 18 shows portions of the standing wave lines in the 
unstable region for two modes at  n = 1, a = - 0.1. As expected from the above 
discussion, the standing-wave lines move out of the unstable region at  u z -n. 
Figure 19 shows a portion of the standing-wave line for the most unstable mode a t  
n = 1, a = - 1; i t  lies just below the upper branch of the neutral stability curve. The 
standing-wave lines for the other n = 1,  a = - 1.0 modes (not shown) lie in the stable 
region just above the upper branch of the neutral stability curve. 

At the point of intersection of the standing-wave carve for a particular mode with 
the neutral stability curve for that mode, u = 0 so the disturbance is time-independent. 
Table 2 is a listing of some points for which u = 0. 
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FIGURE 15. Lines of Re(a,) = Re(a,) and Im(a,) = Im(a,), n. = 1, 01 = -0.100. +, Im(u,) 
= Im (a,) ; . , Re (a,) = Re (a2) ; x , a, = a,, degeneracy. The solid lines follow the neutral stability 
curves for modes 1 and 2. 

12 a Mode R R 

1 - 0.1 1 599 33.8 
1 - 0.1 2 3160 211 
1 - 1.0 1 162 125 

TABLE 2. Points of intersection of standing-wave lines with their respective 
neutral stability curves (a = 0). 

The usual definition, - Im (u)/aR, for the phase speed yields (as can be seen from 
(14) and the fact that a is negative) a large negative phase speed in the region of validity 
of the Pedley approximation. Instead, we define 

so that 

where c,, is the real part of c .  With this definition, we find that c,, lies between 0 and 1 
in the region studied, as it does for non-rotating Poiseuille flow. 

From (14), it can be seen that each of the unstable modes we have studied is a fast 
mode (i.e. c+  1 as R-tco) near the upper branch of its neutral stability curve. It is 
also true that, for la/ 2 I ,  all unstable modes have c, - 1 in the high-R region. We 
have not been able to rule out the possibility that some of the modes with la.( < 1 are 
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FIGURE 17. (a)  Lines of Re(crl) = Re(cr,) and Im(5,) = Im(a;), n = 1,  a = -1.15. +, 
Im (gl) = Im (u2) ; . , Re (a1) = Re (a,) ; x , u1 = r2, degeneracy. The solid line follows the basic 
neutral stability curve. ( b )  Lines of Re(cr,) = Re(u2), Im(a,)  = Im(a,), n = 1 ,  a = -1.20, 
andRe(5,) = Re(a,),n = l , a  = -1.25. +,Im(r , )  = Im(a2);  . ,Re(a1)=Re(m2); x , a 1 = u 2 ,  
degeneracy. The solid line follows the baeic neutral stability curve for a = - 1.20. 
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FIGURE 18. Standing-wave lines, n = 1, a = -0.100. Only that portion of the standing-wave 
line which is within the region of instability has been shown. The solid line follows the neutral 
stability curve for modes 1 and 2. 



122 F .  W .  Cotton and H .  Salwen 

1 I 

102  103 104 
R 

FIGURE 19. Standing-wave line, n = 1, a = - 1.00. Only that portion of the standing-wave 
line which is within the region of instability hm been shown. The solid line follows the neutral 
stability curve for modes 1 and 2. 

slow modes (c- t  0 as R-too) near the lower branches of their neutral stability curves. 
On the high-(a} neutral stability curves, we find that (cr+inQ+iaR)/Ia}z is roughly 
independent of a for fixed n, R/Ia13 and Q/Ja12. 

4. Centre-mode scaling 

the rescaling 

For a s  0, 

t; = lair = Tar ,  

P = lo/laJ = TP/& 

h = ([T + inQ + iaR)/a2 

puts the continuity equation, V . v = 0, in the form 
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and the momentum equation ( 5 )  in the form 

in 1 d ( dw) YE; 1 ) 2in 
+ 1  v+-u,  (A&iR’{2)w+2Q’u+-j3 =- -  6 -  - - 

E2 5 t - d t  a 
(A+iR’E2)~-2R’[uTiP 

1 

and a* = a/ro is the unscaled wavenumber. The equations now involve n, R’, and Q‘ 
but noseparate a. The parameter a now appears only in the boundary conditions, which 
become 

(The upper sign in equations (19)-(21) corresponds to the case of negative a, for which 
we present results in this paper.) 

This rescaling of the equations can account for the scaling of the high-la1 neutral 
stability curves (figure 4) and for the insensitivity of Im ( A )  to a for fixed n, R’ and R’ 
(0 3.5) if the solutions are insensitive to the radius, { = IuI, at  which the boundary 
conditions (23) are applied. This seems to  indicate that these disturbances are ‘centre 
modes’ for which the disturbance velocity falls off rapidly with radius and is already 
small for r 4 1. 

u = V = W = O  a t  <=IaI .  (23) 

5. Discussion 
Mackrodt (1976) constructed an envelope of the neutral stability curves for different 

u and confirmed, by experiments on a long pipe, that this is the correct stability 
boundary for this flow. It is remarkable that a small amount of rigid rotation makes 
Hagen-Poiseuille flow unstable to long-wavelength disturbances. This result suggests 
that it may be important to study the effects of swirling (rotation in the central portion 
which does not extend to the wall) on the stability of flow in a non-rotating pipe. At the 
very least, any experimental study of pipe-flow stability should include an estimate 
of the amount of swirling which is present. 

The scaling of the neutral stability curves appears to indicate ($4) that, at least for 
high 1011, the unstable modes are centre modes. This result is in contrast to plane 
Poiseuille flow (Lin 1955) where the unstable modes are wall modes. 

There are indications in our numerical results of a large number of degeneracies in 
addition to the ones we have studied. The coupling of modes associated with these 
degeneracies may have important effects on the accuracy of approximate calculations 
in the affected regions of the R, R plane. 

We wish to  thank Mr William Torman and Mr Obed Duardo who spent many hours 
running most of our more recent results. This research could not have been carried out 
without the generous assistance of the SIT Computer Center. 
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S &( 1)  

1 4.36 
2 7.54 
3 10-70 
4 13.87 
5 16.99 

TABLE 3. Values of [,(1). 

Appendix 

stability curve, in his limit, to be 
From Pedley’s (1969) results, i t  is possible to derive the equation of the neutral 

4aZQ2+ 4anQR + [,(n) = 0. (A 1) 

The parameter cs(n), which he denoted by pu,(n),  is the 8th eigenvalue (s = 1,2,3,  ...) 
of his equations (4.5) and (4.8a).  For s = 1, Pedley calculated values of [for 1 < n < 10 
iteratively (see his table 1) and developed an empirical formula accurate to three 
significant figures for n 2 6 (his equations (5.4) and ( 5 . 5 ) ) .  

Using the standard asymptotic formulas for the Bessel functions of complex 
argument, we have approximated his eigenvalue equation by 

6 1 ( - 2 4 3  + - (n2 - a)) tan 4 - 6 + - (2n2,/3 - @) = 0, 6 C.9 2 

where # = CS--$(n+$)n (see Cotton 1977, 4.2.13). This should be valid for the very 
high modes for any n; i t  is valid for all the modes for n = 1. We have calculated itera- 
tively the values Cs(l) ,  1 < s < 5 (see table 3) .  The asymptotic solution of equation 

Cs(n) N $(n-k)n+ssn, 
(A 2),  

gives an error of 2 :/o for Cl( 1) and 0.3 yo for Q( 1). 
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